
Fast Image Reference Docutute v 0.2 
A reference work and guide for MixailV�s awesome FastImage .dll for Blitz3D 

Created by Shifty Geezer, © 2007. www.softwaregeezers.com 
 

This guide is a sort of reference cum tutorial for MixailV�s FastImage library. It walks 
through setting up drawing and using commands, with detailed reference to command parameters 
and functions. It is not a translation of MixailV�s own documentation in Russian! It�s a �reverse 

engineered� document from checking the example files and trying out the functions scientifically. It 
is a verbose reference that makes no assumptions, explaining everything even when it�s mind 

numbingly obvious (like x, y, and width parameters!). It doesn�t cover every command yet. 
 

Conventions in this reference doc. 
 

The Fast Image function names have been preceded with FI_. I have implemented this 
change in the .decls file and Include, and use the functions as named here. If you use the default 
files, drop the FI_ prefix from all functions. 

 

Fast Image functions are marked in blue 
Blitz3D functions are marked in sky-blue 
Parameters are listed in red 
Flag comments are green 
Custom terms for are green 

 

Times New-roman is used for user actions 
Indented Arial Narrow is used for code and definitions 

 

____________________________________________________________________________ 

 

Call FI_InitDraw with this command� 
FI_InitDraw SystemProperty(�Direct3Ddevice7�) 

 

Load a texture for your Fast-image 
tex = LoadTextureImage(���, Flags) 

Set �Flags� to �1 + 2� for colour and alpha blending 

 

Create a Fast-image from the texture 
FI_CreateImageEx (tex, width, height, flags) 

tex = texture object from loaded texture 

width = width of fast_image 

height = height of fast_image 

flags = 

FI_AUTOFLAGS = -1 - Centre handle, filtered 

FI_NONE = 0  - Top-left handle, unfiltered 

FI_MIDHANDLE = 1 - Centre handle, unfiltered 

FI_FILTEREDIMAGE = 2 - Top-left handle, filtered 

FI_FILTERED = 2  - Same 

Filtered images have smooth scaling and rotation (bilinear filtering). Unfiltered are pixelated and 

shimmer. 

 

id10523968 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

http://www.softwaregeezers.com


To start FI drawing, call FI_StartDraw 
FI_StartDraw 

 

Set blend type 
FI_SetBlend (flags) 

flags :  

FI_SOLIDBLEND = 0 - Matte colour only 

FI_ALPHABLEND = 1 - Alpha blended colour 

FI_LIGHTBLEND = 2 - Additive blending 

FI_SHADEBLEND = 3 - Seems broken? Should be multiply? 

FI_MASKBLEND = 4 - Matte image masked at alpha < 0.5 

FI_MASKBLEND2 = 5 - Alpha image masked at alpha < 0.5 

FI_INVALPHABLEND = 6 - Seems broken? 

 

Sets the drawing blend type for all subsequent drawing operations. 

 

Set alpha level 
FI_SetAlpha (float#) 

float# ranges from 0.0 (fully transparent) to 1.0 (fully opaque) 

 

Sets the alpha blend amount for all subsequent draw operations. 

 

Draw complete Fast-image 
FI_DrawImageEx (FImg, x, y, frame) 

FImg = Fast-image object 

x = horizontal position in pixels 

y = vertical position in pixels 

frame = animation frame of anim-texture 

 

Draws image FImg to the current framebuffer. 

 
Complex draw of a Fast-image, allows drawing of parts of an image, scaling, and tiling 

FI_DrawImagePart (FImg, x, y, width, height, tx=0, ty=0, twidth=0, theight=0, frame=0, wrap=0) 

FImg = Fast-image object 

x = horizontal position in pixels 

y = vertical position in pixels 

width = width of Fast-image to draw 

height = height of Fast-image to draw 

tx = left coordinate of rectangular region of image to copy 

ty = top coordinate of rectangular region of image to copy 

twidth = Width of region to copy 

theight = height of region to copy 

frame = frame of anim-texture 

wrap = wrapping mode flags : 

FI_NOWRAP = 0  - No wrapping 

FI_WRAPU = 1  - Image is duplicated in horizontal 

FI_MIRRORU = 2  - As FI_WRAPU but also image is alternately flipped horizontally 

FI_WRAPV = 4  - Image is duplicated in vertical 

FI_MORRORV = 8  - As FI_WRAPV but also image is alternately flipped vertically 

FI_WRAPUV = 5  - Duplicates in both directions 

FI_MIRRORUV = 10 - Flips duplicates in both directions 

 



This function requires a fair bit of explaining, but it�s pretty straightforward and quite powerful. 

FI_DrawImagePart draws an area of size (width, height) at  position (x,y). I will call this area Screen-Area.  

The function fills this Screen-Area rectangle with a part of the Fast-image defined by (tx,ty) to 

(tx+twidth,ty+theight). I will call this the Image-Portion. Without any wrapping flags, the Image-Portion is 

scaled to fit the Screen-Area. Taking a 256x256 Fast-image, here�s some examples : 

 

Halve the sprite : 

Grab an Image-Portion of 256 x 256 and render to a Screen-Area of 128 x 128 

width, height = 128; twidth, theight = 256 

 

Double sprite : 

Grab an Image-Portion of all the image, 256 x 256, and render to a Screen-Area of 512 x 512 

width, height = 512; twidth, theight = 256 

 

Double centre portion : 

Select the central area Image-Portion and render at twice size 

tx, ty = 64; twidth, theight = 128; width, height = 128 

 

If the Image-Portion is larger than the Fast-image, or lies outside the Fast-image boundaries, it�s filled with 

blank. Thus if you have a 256x256 Fast-image, and select an Image-Portion of 1024x256, you will have 3x 

the image width of blank space to the image�s right. If you render that to the Screen-Area of size 256x256, 

the image will be squashed to fit, with a skinny image : 

 

Squash large Image_Portion : 

Twidth = 1024, theight = 256; width, height = 256 

 

If you render the Screen-Area the same size as the Image-Portion, you�ll have a lot of blank space to the 

image�s right. 

 

Lots of blank space : 

Twidth, width = 1024; theight, height = 256 

 

Now if you enable the UV wrapping with the wrap flags, the Image-Portion is tiled accordingly. To tile a 

256x256 Fast-image 4x in the horizontal direction, set an Image-Portion 4x the width of the Fast-Image and 

set wrap to FI_WRAPU. This can be rendered to Screen-Area either in normal size, setting the Screen-Area 

width to the same as the Image-Portion width (twidth) : 

 

Tiled image : 

Twidth, width = 1024; theight, height = 256; wrap = FI_WRAPU 

 

� or you can squeeze four copies of the image into an smaller width to make them skinny. Setting a 

Screen-Area width of 512 will halve the width of the drawn images  : 

 

Tiled image squeezed into narrower space, halving their width: 

Twidth = 1024; width = 512,  theight, height = 256; wrap = FI_WRAPU 

 

Finish Fast Image drawing with FI_EndDraw 
FI_EndDraw 

 
 The above allows you to add sprites with alpha blending to any application. It�s awesome! 
You can also combine 3D between any layers of 2D operations you want. For example, draw a 



background in 2D, render 3D objects, and add 2D elements over the top. Just remember to set 
Blitz3D�s camera cls mode to not clear the colour. 

 

CameraClsMode cam, 0, 1 

Main Loop 

FI_StartDraw 

� 

(FI Drawing instructions) 

� 

FI_EndDraw 

 RenderWorld 

FI_StartDraw 

 � 

(FI Drawing instructions) 

� 

FI_EndDraw 

End Main Loop 

 

 With this, you can draw a 2D tiled background say, populate it with 3D game characters or 
objects, and add super fast and sassy 2D particle effects on top before drawing the UI elements. Or 
render a 3D world and populate it with 2D characters. You could even set the camera draw limits to 
render different depths in different passes, and add 2D elements in-between. 

 

That�s the very basics covered. Here�s some more options - 
 



Creating a custom Blend mode 
FI_SetCustomBlend SrcBlend, DestBlend 

SrcBlend = Blend type on source values 

DestBlend = Blend type on destination values 

 

This creates a custom blend using DirectX 7�s blend modes. The colour that appears on screen is: 

Final Color = SourceColor * SourceBlendFactor + DestColor * DestinationBlendFactor 

SourceColor is the colour of the Fast image pixel being drawn, and DestColor is the current framebuffer 

colour. 

The SourceBlendFactor and DestinationBlendFactor are set from the SrcBlend and DestBlend values. Each 

value corresponds to a different algorithm in the blend mode. 

 

The above is a table of D3D�s types. You can add these as constants to your FastImage.bb include file with 

the following : 

Const D3DBLEND_ZERO = 1 

Const D3DBLEND_ONE = 2 

Const D3DBLEND_SRCCOLOR = 3 

Const D3DBLEND_INVSRCCOLOR = 4 

Const D3DBLEND_SRCALPHA = 5 

Const D3DBLEND_INVSRCALPHA = 6 

Const D3DBLEND_DESTALPHA = 7 

Const D3DBLEND_INVDESTALPHA = 8 

Const D3DBLEND_DESTCOLOR = 9 

Const D3DBLEND_INVDESTCOLOR = 10 

Const D3DBLEND_SRCALPHASAT = 11 

Const D3DBLEND_BOTHSRCALPHA = 12 

Const D3DBLEND_BOTHINVSRCALPHA = 13 

D3DBLEND_ZERO (0, 0, 0, 0)   

D3DBLEND_ONE  (1, 1, 1, 1)   

D3DBLEND_SRCCOLOR  (Rs, Gs, Bs, As)   

D3DBLEND_INVSRCCOLOR  (1�Rs, 1�Gs, 1�Bs, 1�As)   

D3DBLEND_SRCALPHA  (As, As, As, As)   

D3DBLEND_INVSRCALPHA  (1�As, 1�As, 1�As, 1�As)   

D3DBLEND_DESTALPHA  (Ad, Ad, Ad, Ad)   

D3DBLEND_INVDESTALPHA  (1�Ad, 1�Ad, 1�Ad, 1�Ad)   

D3DBLEND_DESTCOLOR  (Rd, Gd, Bd, Ad)   

D3DBLEND_INVDESTCOLOR  (1�Rd, 1�Gd, 1�Bd, 1�Ad)   

D3DBLEND_SRCALPHASAT  (f, f, f, 1); f = min(As, 1�Ad)   

D3DBLEND_BOTHSRCALPHA  Obsolete For DirectX 6.0 and later, you can achieve 

the same affect by setting the source and 

destination blend factors to 

D3DBLEND_SRCALPHA and 

D3DBLEND_INVSRCALPHA in separate 

calls. 

D3DBLEND_BOTHINVSRCALPHA  SRC  

(1�As, 1�As, 1�As, 1�As), 

DST 

(As, As, As, As); 

The destination blend selection is 

overridden. This blend mode is supported 

only for the 

D3DRENDERSTATE_SRCBLEND render 

state. 



The standard alpha blend mode is achieved with D3DBLEND_BOTHSRCALPHA or 

FI_SetCustomBlend D3DBLEND_SRCALPHA, D3DBLEND_INVSRCALPHA 

This is a linear interpolation of the source and destination colour values based on source alpha. 

 

You can add the colour values of source and destination without regard for alpha by using 

FI_SetCustomBlend D3DBLEND_ONE, D3DBLEND_ONE 

 

For multiply blending (no alpha) use 

FI_SetCustomBlend D3DBLEND_DESTCOLOR, D3DBLEND_ZERO 

 

Change the colour filter 
FI_SetColor red, green, blue 

red = red multiplier 

green = green multiplier 

blue = blue multiplier 

 

Filters all subsequent draw operations by multiplying each  colour component by (amount/255). Thus a 

value of 255 renders all colours at original brightness. A value of 128 halves the brightness of that colour 

component. To render an image in it�s red, green and yellow component, and lose or blue data, you�d use : 

FI_SetColor 255, 255, 0 

 

Whites will be yellow, yellow will be yellow, purples will be red, and cyans will be green. You can think of 

this function as holding up a colour filter over the image.  

 

Change the filter for each corner 
FI_SetCustomColor top_ left, top_ right, bottom_ left, bottom _ right 

top_left = colour multiplier for top-left corner 

top_right = colour multiplier for top-right corner 

bottom_ left = colour multiplier for bottom-left corner 

bottom_right = colour multiplier for bottom-right corner 

 

This works the same as above, but with a colour+alpha value for each corner of the image. The format of 

each value is $aarrggbb, with hexadecimal entry for each value. You can create gradients easily, or fade 

out an image on one side. Eg. To fade out the right hand side, set the filter values on the right to 0 for the 

alpha : 

FI_SetCustomColor $FFFFFFFF, $00FFFFFF, $FFFFFFFF, $00FFFFFF 

 

To gradate the image from colour at the top to black at the bottom, use : 

FI_SetCustomColor $FFFFFFFF, $FFFFFFFF, $FF000000, $FF000000 

 

And to colour the top through a yellow filter, and the bottom through a blur filter, with the bottom-right 

transparent : 

FI_SetCustomColor $FFFFFF00, $FFFFFF00, $FF0000FF, $FF0000FF 

 

Rotate Drawing operations 
FI_SetRotation angle# 

angle# = angle of rotation, clockwise, in Cartesian degrees 

 

Sets the rotation of all subsequent drawing operations by angle# degrees clockwise. 

 



�Simple� operations 
In the drawing operations for shapes, like rectangles and ovals, there are two modes. The normal version of 

the function rotates the shape by the previously set FI_SetRotation amount. The simple versions ignore 

rotation commands and are faster. 

 


